Random Sampling for Continuous Streams with Arbitrary Updates
نویسندگان
چکیده
منابع مشابه
A Continuous Sampling from Distributed Streams
A fundamental problem in data management is to draw and maintain a sample of a large data set, for approximate query answering, selectivity estimation, and query planning. With large, streaming data sets, this problem becomes particularly difficult when the data is shared across multiple distributed sites. The main challenge is to ensure that a sample is drawn uniformly across the union of the ...
متن کاملWeighted Random Sampling over Data Streams
In this work, we present a comprehensive treatment of weighted random sampling (WRS) over data streams. More precisely, we examine two natural interpretations of the item weights, describe an existing algorithm for each case ([2,4]), discuss sampling with and without replacement and show adaptations of the algorithms for several WRS problems and evolving data streams.
متن کاملOptimal Random Sampling from Distributed Streams Revisited
We give an improved algorithm for drawing a random sample from a large data stream when the input elements are distributed across multiple sites which communicate via a central coordinator. At any point in time the set of elements held by the coordinator represent a uniform random sample from the set of all the elements observed so far. When compared with prior work, our algorithms asymptotical...
متن کاملIncremental updates of closed frequent itemsets over continuous data streams
Online mining of closed frequent itemsets over streaming data is one of the most important issues in mining data streams. In this paper, we propose an efficient one-pass algorithm, NewMoment to maintain the set of closed frequent itemsets in data streams with a transaction-sensitive sliding window. An effective bit-sequence representation of items is used in the proposed algorithm to reduce the...
متن کاملSampling with arbitrary precision
We study the problem of the generation of a continuous random variable when a source of independent fair coins is available. We first motivate the choice of a natural criterion for measuring accuracy, the Wasserstein L∞ metric, and then show a universal lower bound for the expected number of required fair coins as a function of the accuracy. In the case of an absolutely continuous random variab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Knowledge and Data Engineering
سال: 2007
ISSN: 1041-4347
DOI: 10.1109/tkde.2007.250588